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Many intrinsically disordered proteins (IDPs) may undergo liquid–
liquid phase separation (LLPS) and participate in the formation of
membraneless organelles in the cell, thereby contributing to the
regulation and compartmentalization of intracellular biochemical
reactions. The phase behavior of IDPs is sequence dependent, and
its investigation through molecular simulations requires protein
models that combine computational efficiency with an accurate
description of intramolecular and intermolecular interactions. We
developed a general coarse-grained model of IDPs, with residue-
level detail, based on an extensive set of experimental data on
single-chain properties. Ensemble-averaged experimental observ-
ables are predicted from molecular simulations, and a data-driven
parameter-learning procedure is used to identify the residue-
specific model parameters that minimize the discrepancy between
predictions and experiments. The model accurately reproduces
the experimentally observed conformational propensities of a
set of IDPs. Through two-body as well as large-scale molecular
simulations, we show that the optimization of the intramolec-
ular interactions results in improved predictions of protein self-
association and LLPS.

intrinsically disordered proteins | liquid–liquid phase separation | force field
parameterization | biomolecular condensates | protein interactions

Many intrinsically disordered proteins (IDPs) and proteins
with disordered regions can condense into liquid-like

droplets, namely, a biomolecule-rich phase coexisting with a
more dilute solution (1–5). This demixing process is known as
liquid–liquid phase separation (LLPS) and is one of the ways
cells compartmentalize proteins, often together with nucleic
acids (6). While LLPS plays crucial biological roles in the cell, its
dysregulation leads to maturation of biomolecular condensates
into hydrogel-like assemblies, promoting the formation of
neurotoxic oligomers and amyloid fibrils (5,7). A quantitative
model for the “molecular grammar” of LLPS, including the
influence of disease-associated mutations and posttranslational
modifications (PTMs) on the propensity to phase separate, is
key to understand these processes. The sequences of IDPs and
intrinsically disordered regions that easily undergo LLPS are
often characterized by stretches enriched in small polar residues
(spacers) interspersed by, e.g., aromatic or arginine residues
(stickers), which are instrumental for the formation of reversible
physical cross-links via π–π, cation–π, and sp2–π interactions
(8–12). Y and R residues were shown to be necessary for the
LLPS of a number of proteins including FUS, hnRNPA1, LAF-
1, and Ddx4 (8, 10, 11, 13–17). While the propensity to undergo
LLPS increases with the number of Y residues in the sequence,
recent studies have revealed that the role of R residues is context
dependent (16) and strongly affected by salt concentration
(17), reflecting the unusual characteristics of the R side
chain (18, 19).

Here we present the development of a coarse-grained (CG)
model capable of predicting the phase behavior of IDPs based
on amino acid sequence. CG models enable the combination

of a sequence-dependent description with the computational
efficiency necessary to explore the long time and large length
scales involved in phase transitions (11, 20, 21). Although
CG molecular simulations have been employed to explain the
sequence dependence of the LLPS of a number of IDPs (11,
15, 17, 20–22) as well as the effect of phosphorylation on LLPS
propensities (23, 24), such models have proven difficult to use
to predict the phase behavior of very diverse sequences (25).
Building on recent developments, including experimental phase
diagrams of a number of IDPs (3, 4, 15, 16), we trained and
tested a robust sequence-dependent model of the LLPS of
IDPs. In particular, due to the similarity between intramolec-
ular interactions within IDPs and intermolecular interactions
between IDPs (12, 26), we reasoned that by optimizing a model
to capture structural preferences for a broad set of monomeric
IDPs, we could obtain a good model for interactions between
IDPs.

The starting point for our analyses is the hydrophobicity
scale (HPS) model (21) (with minor modification; SI Appendix)
wherein, besides steric repulsion and salt-screened charge–
charge interactions, residue–residue interactions are determined
by hydropathy parameters (λ) which were derived from the
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atomic partial charges of a classical all-atom force field (27).
Recently, the development of the HPS-Urry model (28)
presented substantial improvements in accuracy over the original
HPS model. These were achieved using a hydrophobicity scale
derived from transition temperatures of elastin-like peptides
(29) and further shifting the λ parameters by -0.08 to improve
agreement with experimentally measured radii of gyration.

To address the current limitations, we improve upon these
models by optimizing the λ parameters through a Bayesian
parameter-learning procedure (30–33), leveraging as prior
knowledge the probability distribution of the λ parameters
evaluated from analyzing 87 hydrophobicity scales. The train-
ing set comprises small-angle X-ray scattering (SAXS) and
paramagnetic relaxation enhancement (PRE) NMR data of
45 IDPs which we selected from the literature. First, we run
Langevin dynamics simulations of single IDPs and estimate the
experimental observables using state-of-the-art methods (34).
Second, we employ a Bayesian regularization approach to pre-
vent overfitting the training data and select three models which
are equally accurate with respect to single-chain conformational
properties. Third, through two-chain simulations, we validate the
models by comparing predicted and experimental intermolecular
PRE NMR data for the low-complexity domain (LCD) of the
heterogeneous nuclear ribonucleoprotein (hnRNP) A2 (A2
LCD) (22) and the LCD of the RNA-binding protein fused
in sarcoma (FUS LCD) (23). Fourth, we perform coexistence
simulations to test the models against the phase behavior of A2
LCD (22, 24); FUS LCD (35, 36); variants of hnRNP A1 LCD
(A1 LCD) (15, 16); the N-terminal region of the germ-granule
protein Ddx4 (Ddx4 LCD) (8, 10, 13); and the N-terminal, R-
/G-rich domain of the P granule protein LAF-1 (LAF-1 RGG
domain). We use the final model to provide insight into the
interactions between IDPs within condensates and to help
elucidate the role of different amino acids to the driving force for
LLPS.

Results and Discussion
Analysis of Hydrophobicity Scales. The λ values of the original
HPS model are based on a hydrophobicity scale derived by
Kapcha and Rossky from the atomic partial charges of an all-
atom force field (27). Dozens of amino acid hydrophobicity scales
have been derived from experimental as well as bioinformatics
approaches such as the partitioning of amino acids between
water and organic solvent, the partitioning of peptides to the
lipid membrane interface, and the accessible surface area of
residues in folded proteins (37, 38). To carry out the Bayesian
optimization of the amino acid specific λ values, we sought to
estimate the prior probability distribution of the hydropathy pa-
rameters from the analysis of 98 hydrophobicity scales collected
by Simm et al. (38). Each scale was minimum–maximum (min–
max) normalized, and after ranking in the ascending order of the
HPS scale, we discarded all the scales yielding a linear fit with
negative slope. This procedure allowed us to identify scales which
were present in the set both in their original form and as the addi-
tive inverse of the hydropathy values (reversed scales). For most
scales, the selection criterion resulted in discarding the reversed
form. However, for scales where the most negative values of
the hydropathy parameter correspond to the most hydrophobic
amino acids–such as the scales by Bull and Breese (39), Guy
(40), Bishop et al. (41). and Welling et al. (42)–we retained
only the reversed form. The 87 scales that remained after this
filtering were used to calculate the average scale (AVG) and the
probability distribution of the λ values for the 20 amino acids,
P(λ), which is normalized so that

∑
aa

∫ λaa=1

λaa=0
P(λaa) dλaa = 20

(Fig. 1A). For the optimization described below we use the AVG
scale as starting point, as well as an indication of the typical
accuracy obtained from the prior knowledge encoded in P(λ).

We assessed the HPS, HPS-Urry, and AVG parameter sets
by running simulations of 45 IDPs ranging in length between 24
and 334 residues and compared the results against experiments.

A B C

D E F

Fig. 1. Assessing the HPS, AVG, and HPS-Urry models using experimental data reporting on single-chain conformational properties. (A) Probability
distributions of the λ parameters calculated from 87 min–max normalized hydrophobicity scales. Lines are the λ parameters of the HPS model (blue),
the average over the hydrophobicity scales (orange) and the HPS-Urry model (green) (28). Intramolecular PRE intensity ratios for (B) the S42C mutant
of α-Synuclein and (C) the S143C mutant of A2 LCD from simulations and experiments (22, 43) (black). (D) χ2 values quantifying the discrepancy between
simulated and experimental intramolecular PRE data, scaled by the hyperparameter η = 0.1 (Materials and Methods). Relative difference between simulated
and experimental radii of gyration (E) for proteins that do not readily undergo phase separation alone and (F) for variants of A1 LCD, with negative values
corresponding to the simulated ensembles being more compact than in experiments.

2 of 10 PNAS
https://doi.org/10.1073/pnas.2111696118

Tesei et al.
Accurate model of liquid–liquid phase behavior of intrinsically disordered

proteins from optimization of single-chain properties

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
29

, 2
02

1 

https://doi.org/10.1073/pnas.2111696118


www.manaraa.com

BI
OP

HY
SI

CS
AN

D
CO

M
PU

TA
TIO

NA
L

BI
OL

OG
Y

Fig. 2. Flowchart illustrating the Bayesian parameter-learning procedure
(Materials and Methods).

Specifically, we compared the simulations with the radii of gyra-
tion, Rg , of 42 IDPs (SI Appendix, Table S1) and intramolecular
PRE data of six IDPs (SI Appendix, Table S2) (16, 22, 23, 43–
57). Compared to the AVG scale, the HPS model overestimates
the compaction of α-Synuclein whereas it closely reproduces
the PRE data for A2 LCD (Fig. 1 B and C). In general, the
HPS model accurately predicts the conformational properties
of sequences with high LLPS propensity, e.g., FUS LCD, A2
LCD, and A1 LCD (Fig. 1 D and F), while the AVG scale is
considerably more accurate at reproducing the Rg of proteins
that do not readily undergo phase separation alone (Fig. 1E).
The recently proposed HPS-Urry model (28) is the most accurate
at predicting the intramolecular PRE data while it shows inter-
mediate accuracy for the Rg values of both proteins that do not
readily undergo phase separation alone and A1 LCD variants.

The HPS-Urry model in particular differs significantly from the
HPS and AVG models for the λ parameters for R and E as
well as the reversal of the order of hydrophobicity of Y and F
(Fig. 1A).

Optimization of Amino Acid–Specific Hydrophobicity Values. To
obtain a model that more accurately predicts the conformational
properties of IDPs of diverse sequences and LLPS propensities,
we trained the λ values on a large set of experimental Rg

and PRE data using a Bayesian parameter-learning procedure
(30) shown schematically in Fig. 2 (Materials and Methods).
We initially performed an optimization run starting from
the AVG λ values and setting the hyperparameters to θ =
η = 0.1 (SI Appendix, Fig. S1A). We collected the optimized
sets of λ values which yielded η〈χ2

PRE 〉< 21 and 〈χ2
Rg

〉< 3

(circles in Fig. 3A). The optimization was repeated starting
from all λ= 0.5 to assess that the parameter space sam-
pled by our method is independent of the initial conditions
(SI Appendix, Figs. S1D and S2A). Thus, while we used the AVG
model as starting point, our final parameters only depend on
P(λ) via its use as the prior in the Bayesian optimization.

From the pool of optimized parameters, we selected the λ set
which resulted in the largest Spearman’s correlation coefficient
(ρ= 0.78) between simulated and experimental Rg values for
the A1 LCD variants. We base this final selection of the opti-
mal λ set on the Spearman’s correlation coefficient of the A1
LCD variants because we expect that capturing the experimental
ranking in chain compaction will result in accurate predictions
of the relative LLPS propensities (15, 16, 20, 58, 59). Further,
the systematic mutagenesis studies enable us to more clearly
decouple the parameters for Y vs. F and R vs. K (15, 16). We
note that while this selection uses only the A1 LCD variants, all
three parameter sets result in good agreement with the full PRE
and Rg dataset (Fig. 3A).

A B

D E

C

Fig. 3. Selection and performance of the M1–3 models with respect to the training data. (A) Overview of the optimal λ sets with η〈χ2
PRE〉 < 21 and

〈χ2
Rg

〉 < 3 collected through the parameter learning procedures started from λ0 = AVG (upward triangles), M1 (squares), and M2 (downward triangles).

The gray gradient shows the Spearman’s correlation coefficient between experimental and simulated Rg values for the A1 LCD variants in the training set.
Colored open symbols indicate the M1 (blue upward triangle), M2 (orange square), and M3 (green downward triangle) scales, whereas the adjacent values
are the respective Spearman’s correlation coefficients. (B) Covariance matrix of the λ sets with η〈χ2

PRE〉 < 21 and 〈χ2
Rg

〉 < 3. (C) M1 (blue), M2 (orange), and

M3 (green) scales. Solid lines are guides for the eye, whereas the gray shaded area shows the mean ±2 SD of the λ sets with η〈χ2
PRE〉 < 21 and 〈χ2

Rg
〉 < 3.

Comparison between (D) ηχ2
PRE and (E) χ2

Rg
values for the HPS model (gray) and the optimized M1 (blue), M2 (orange), and M3 (green) models.
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The selected model, referred to as M1 hereafter, is the start-
ing point for two consecutive optimization cycles (SI Appendix,
Fig. S1B) which were performed with a lower weight for the prior
(θ = 0.05), yielding a new pool of optimized parameters (squares
in Fig. 3A) and model M2 (largest ρ= 0.75). To generate a third
model, we further decreased the confidence parameter to θ =
0.02 and performed an additional optimization run starting from
M2 (SI Appendix, Fig. S1C). From the collected optimal param-
eters (triangles in Fig. 3A), we selected M3 (largest ρ= 0.73).
As shown in Fig. 3B, the optimal λ values collected through the
four independent optimization runs (SI Appendix, Fig. S1 A–D)
are weakly intercorrelated. The covariance values range between
−0.015 and 0.015 for most amino acids, with the exception of the
SDs of N, C, T, M, W, and I. C, M, W, and I are among the least
frequent amino acids in the training set (SI Appendix, Fig. S3),
and unsurprisingly, we observe the largest covariance values for
C–W (0.017), C–M (-0.02) and C–I (–0.016). Fig. 3C shows that
M1–3 fall within two SDs above and below the mean of the λ
values yielding η〈χ2

PRE 〉< 21 and 〈χ2
Rg

〉< 3 (gray shaded area).
Despite their differences, M1–3 fit the training data equally
accurately and result in an improvement in 〈χ2

PRE 〉 and 〈χ2
Rg

〉 of
∼ 30 and ∼ 95%, respectively, with respect to the HPS model
(Fig. 3 D and E).

Notably, the optimization procedure captures the sequence
dependence of the chain dimensions (Fig. 4) and results in
accurate predictions of intramolecular PRE data for both
highly soluble IDPs and proteins that more readily phase
separate (SI Appendix, Figs. S4 B–D and S5–S10), as well as in
radii of gyration with relative errors −14%<ΔRg /Rg,exp <
12% (SI Appendix, Fig. S4 E and F). Besides reproducing the
experimental Rg values for the longer chains with high accuracy,
the optimized models also capture the differences in Rg and
scaling exponents, ν, for the variants of A1 LCD (Fig. 4B
and SI Appendix, Fig. S11). The lower Pearson’s correlation
coefficients observed for ν, compared to the corresponding
Rg data, may originate from the different models used to
infer ν from SAXS experiments and simulation data, i.e., the
molecular form factor method (16, 52) and least-squares fit to
long intramolecular pairwise distances, Rij , vs. |i − j |> 10 (60)
(SI Appendix, Fig. S12).

To assess the impact of phase separating proteins on the op-
timized models, we perform an optimization run wherein the
A1 LCD variants are removed from the training set. The ma-
jor difference between the resulting optimal λ set and models
M1–3 is the considerably smaller values for R and Y residues
(SI Appendix, Fig. S2C). Indeed, the large λ values for R and
Y residues in M1–3 relative to the HPS, AVG, and HPS-Urry
models is a striking feature which resonates with previous ex-
perimental findings pointing to the important role of R and Y
residues in driving LLPS (8, 14–16, 22, 61, 62).

A B

Fig. 4. (A) Comparison between experimental and predicted radii of gyra-
tion (SI Appendix, Table S1), Rg, for the HPS, HPS-Urry, and M1–3 models. (B)
Zoom-in on the Rg values of the A1 LCD variants, with Pearson’s r coefficients
for this subset of the training data reported in the legend.

To identify the hydrophobicity scales which most closely resem-
ble M1–3, we construct a dendrogram (SI Appendix, Fig. S13)
complementing the 87 scales retained from the set by Simm et al.
(38) with the Urry, Kapcha–Rossky, and M1–3 scales and using
average linkage-based hierarchical clustering and Euclidean dis-
tances as the metric. This analysis reveals that the hydrophobicity
scales by Urry et al. (29), Bishop et al. (41), Wimley and White
(63), and the membrane protein surrounding hydrophobicity
scale by Ponnuswamy and Gromiha (64) are those with greatest
similarity to M1–3. These scales, which are characterized by a λ
value for the R residue above the 80% quantile, are possibly the
best of the unmodified scales for the properties that we optimized
M1–3 to reproduce.

Testing Protein–Protein Interactions. To test whether the pa-
rameters trained on single-chain conformational properties
are transferable to protein–protein interactions, we compared
experimental intermolecular PRE rates, Γ2, of FUS LCD and A2
LCD (22, 23) with predictions from two-chain simulations of the
M1–3 models performed at the same conditions as the reference
experiments. Intermolecular Γ2 values were obtained from
solutions of spin-labeled 14N protein and 15N protein without
a spin label in equimolar amount and report on the transient
interactions between a paramagnetic nitroxide probe attached
to a cysteine residue of the spin-labeled chain and all the amide
protons of the 15N-labeled chain. We carried out the calculation
of the PRE rates using the software DEER-PREdict (34),
assuming an effective correlation time of the spin label, τt , of
100 ps and fitting an overall molecular correlation time, τc , within
the interval 1≤ τc ≤ 20 ns. In agreement with experiments, Γ2

values predicted by the M1–3 models are characterized by no
distinctive peaks along the protein sequence (Fig. 5 A–E), which
is consistent with transient and nonspecific protein–protein
interactions. Notably, while PRE rates for FUS LCD are of the
same magnitude for all spin-labeled sites, the A2 LCD presents
larger Γ2 values for S99C than for S143C indicating that the
tyrosine-rich aggregation-prone region (residues 84 to 107) is
involved in more frequent intermolecular contacts with the entire
sequence. The discrepancy between predicted and experimental
intermolecular PRE data, χ2

PRE , varies significantly as a function
of τc (Fig. 5 F and G). For both FUS LCD and A2 LCD, the
optimal τc is larger for M1 than for M3, which suggests that the
latter has more attractive intermolecular interactions. While for
M1 the minimum of χ2

PRE is at τc = 17 ns for both proteins, for
M3 the optimal τc value is ∼ 8 ns smaller for FUS LCD than
for A2 LCD. Although the accuracy of τc is difficult to assess in
the case of transiently interacting IDPs, this large difference in τc
(Fig. 5) suggests that the protein–protein interactions predicted
for FUS LCD by M3 may be overly attractive.

To quantify protein–protein interactions with the optimized
models, we calculated second virial coefficients, B22, from two-
chain simulations (SI Appendix). The net interactions are attrac-
tive for both the sequences (B22 < 0) and considerably stronger
for A2 LCD than for FUS LCD. As expected from the λ values
and amino acid compositions, M3 presents the most negative B22

values (large λ values for Q, G, and P), followed by M2 and M1
(Fig. 5I).

To test whether predictions of protein self-association by M1–3
are sequence dependent, we compared the probability of finding
proteins in the bound dimeric state, pB , in simulations of α-
Synuclein, p15PAF, full-length tau (ht40), A2 LCD, and FUS
LCD performed at the solution conditions of the reference
experimental data (43, 50, 65) (SI Appendix). In agreement
with experimental findings, we find that the highly soluble α-
Synuclein, p15PAF, and ht40 proteins do not self-associate
substantially in our simulations, whereas A2 LCD and FUS
LCD have pB ∼ 4 and ∼ 1%, respectively. We further estimated
the dissociation constants of A2 LCD and FUS LCD using
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Fig. 5. Testing the M1–3 models using experimental findings on protein–protein interactions. Comparison between experimental (black) intermolecular
PRE rates (SI Appendix, Table S3) and predictions from the M1 (blue), M2 (orange) and M3 (green) models for (A–C) FUS LCD and (D and E) A2 LCD calculated
using the best-fit correlation time, τc. (F and G) Discrepancy between calculated and experimental intermolecular PRE rates χ2

PRE as a function of τc.
(H) Second virial coefficients, B22, of FUS LCD (circles) and A2 LCD (squares) calculated from two-chain simulations of the M1–3 models. Error bars are
SEMs estimated by bootstrapping 1,000 times 40 B22 values calculated from trajectory blocks of 875 ns. (I) Probability of the bound state estimated from
protein-protein interaction energies in two-chain simulations of the M1–3 models. (J) Dissociation constants, Kd , of FUS LCD (circles) and A2 LCD (squares)
calculated from two-chain simulations of the M1–3 models. For pB and Kd , error bars are SDs of 10 simulation replicas. Lines in H and J are guides for
the eye.

Kd = (1− pB )
2/(NApBV ) and Kd = 1/(NApB (V − B22)) self-

consistently (66), where NA is Avogadro’s number (Fig. 5J and
SI Appendix, Fig. S14).

Testing LLPS Propensities. To test the ability of the models to
capture the sequence dependence of LLPS propensity, we per-
formed multichain simulations in a slab geometry and calculated
protein concentrations of the coexisting condensate, ccon , and
dilute phase, csat . We compared our simulation results to an
extensive set of sequences which have been shown to undergo
LLPS below an upper critical solution temperature (UCST),
namely, FUS LCD (23, 35, 36), A2 LCD (22, 24), the NtoS
variant of A2 LCD (24), and LAF-1 RGG domain (11, 67–
69), as well as variants of A1 LCD (15, 16) and Ddx4 LCD
(8, 10, 13). From simulations of the optimized models at 37 ◦C,
we observed that for a number of sequences in the test set,
the predicted csat values are too low to allow for converged
estimates from μs-timescale trajectories (SI Appendix, Fig. S15).
Conversely, the least LLPS-prone variants of Ddx4 LCD yielded
one-phase systems when simulated at 37 ◦C using HPS-Urry and
M1–3 models. Thus, to be able to estimate converged csat values
(SI Appendix, Figs. S16, S17, and S18), simulations were carried
out at 50 ◦C, except for the HPS-Urry model which we simulated
at 24 ◦C (SI Appendix, Table S4). The FtoA and RtoA variants of
Ddx4 LCD were also simulated at 24 ◦C using the M1–3 models
as in simulations of the same systems at 50 ◦C we only observed
a single phase.

Simulations using M1 at 50 ◦C most closely recapitulate the
experimental trend in csat across the diverse sequences (Fig. 6
A, D, and G) and reproduce the reference ccon and csat values

measured at room temperature. Conversely, HPS overestimates
the relative LLPS propensity of FUS LCD, whereas simula-
tions using HPS-Urry at 24 ◦C show deviations of about an
order of magnitude from the reference csat values for A2 LCD,
Ddx4 LCD, A1 LCD, and FUS LCD. Regarding the LAF-1
RGG domain, all of the models overestimate by at least a fac-
tor of ∼ 5 the experimental ccon (68, 69), whereas M1 repro-
duces within a factor of ∼ 2 the experimental csat value from
temperature-dependent turbidity measurements (11), both for
the wild type (WT) and for variants with randomly shuffled
sequence (LAF-1 shuf) and without residues 21 to 30 (LAF-1 Δ
21 to 30) (SI Appendix, Fig. S19). Although M1–3 fit the training
data equally well, the prediction of LLPS propensities for the
diverse sequences in Fig. 6 A and D differ considerably, with
Pearson’s correlation coefficients between simulation and experi-
mental log10 (csat) values ranging from 0.67 for M1 to 0.14 for M3
(Fig. 6G). The discrepancy is particularly evident for the Ddx4
LCD and FUS LCD which are rich in N and Q residues, respec-
tively, i.e., the residues for which the M1 and M3 λ sets differ the
most.

We further test our predictions against 15 variants of A1 LCD
(Fig. 6 B and E). These include aromatic and charge variants,
which were designed to decipher the role on the driving forces
for phase separation of Y vs. F residues and of R, D, E, and
K residues, respectively (16). The nomenclature, ±NX X±NZ Z,
denotes increase or decrease in the number of residues of type X
and Z with respect to the WT, which is achieved by mutations to
or from G and S residues while maintaining a constant G/S ratio.
M1–3 are found to be equally accurate and present a considerable
improvement over previous models with respect to their ability to
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Fig. 6. Protein concentrations (A–C) in the condensate and (D–F) in the dilute phase from slab simulations of the M1–3, HPS, and HPS-Urry models performed
at 50 ◦C (closed symbols), 37 ◦C (crosses in H), and 24 ◦C (open symbols). Red open squares show experimental measurements at ∼ 24 ◦C (A, C, D, and
F) and ∼ 4 ◦C (B and E). Correlation between log10(csat/M) from simulations and experiments for (G) diverse sequences and (H) A1 LCD variants. Solid
lines show linear fits to the simulation data at 50 ◦C. Dashed lines show linear fits to the HPS-Urry data at 24 ◦C (G and H) and to the M1–3 data at
37 ◦C (H). Values reported in the legends are Pearson’s correlation coefficients. Error bars are SEMs of averages over blocks of 0.3 μs. We note that the
correlation coefficients reported in G are associated with a substantial uncertainty as they are calculated over only three (HPS), four (HPS-Urry), and five points
(M1–3).

recapitulate the trends in LLPS propensity for the aromatic and
charged variants of A1 LCD. Since M1–3 were selected based
on their performance in predicting the experimental ranking for
the Rg values of 21 A1 LCD variants (SI Appendix, Table S1),
this result supports our model development strategy. For M1–3,
Pearson’s correlation coefficients exceed 0.7 between log10 (csat)
values measured at 4 ◦C (16) and simulation predictions at both
50 and 37 ◦C (Fig. 6H). Moreover, csat values from simulations
at 37 ◦C are in agreement with the reference csat values at 4 ◦C
(Fig. 6H and SI Appendix, Fig. S15). As we observed for the
diverse sequences, quantitative agreement with the experimental
csat values is achieved by carrying out simulations of the M1
model at a temperature systematically larger by ∼ 30 ◦C than the
experimental conditions. In addition to the lack of temperature
dependence of the hydropathy parameters (70), the inconsistency
between the temperature dependence of chain compaction and
phase separation might be attributed to the long range of the
nonelectrostatic interactions, which we compute up to distances
of 4 nm (SI Appendix). Moreover, the significant decrease in the
number of interaction sites upon coarse-graining at the amino
acid level, and the resulting reduction in configurational entropy
(71, 72), may promote LLPS by lowering the entropic penalty
associated with partitioning a chain from the dilute solution to
the condensate.

M1–3 reproduce the experimental ranking for LLPS propen-
sity of the Ddx4 LCD variants, i.e., WT� CS> FtoA� RtoK
(Fig. 6 C and F), and for all the variants, M1 and M3 consistently
display the highest and lowest LLPS propensities, respectively.
Simulations at 50 ◦C using M2 are in quantitative agreement
with the experimental csat values (13) for both WT and the
CS variant, which has the same net charge and amino acid

composition as the WT but a more uniform charge distribution
along the sequence. Moreover, as observed experimentally (13),
M1–3 predict a single phase for the RtoK variant at 24 ◦C. As
previously shown by Das et al. (25), the HPS model predicts
a considerable increase in LLPS propensity upon replacement
of all 24 R residues in the Ddx4 LCD with K (RtoK variant;
Fig. 6C), in apparent contrast to experimental observations (10,
13). Interestingly, augmenting the HPS model with stronger
cation–π interactions for R-aromatic than for K-aromatic pairs
(25) has been shown to be insufficient to capture the lower LLPS
propensity of the RtoK variant compared to WT. On the other
hand, our data for the M1–3 and HPS-Urry models indicate
that making all the interactions involving R more favorable
results in more accurate predictions. In fact, a large λ value
for R may better mimic its relatively unfavorable free energy of
hydration (19) as well as the occurrence of R-aromatic cation–
π interactions, R-R π-stacking, and R-D/E bidentate H-bonding
(10, 17, 18, 73). Compared to the Kapcha–Rossky scale, it is
noteworthy that the increase in the λ values of R, Y, and G in
M1–3 is accompanied by an overall decrease in the average λ
value. Hence, the optimization procedure led to the enhance-
ment of specific attractive forces while maintaining a balance be-
tween electrostatic and nonelectrostatic interactions (25), which
reveals itself, for example, in the ability of M1–3 to recapitulate
the lower LLPS propensity of the CS variant with respect to Ddx4
LCD WT.

The M1 and M2 parameter sets differ mainly for the λ value
of the N residue (Fig. 3C) and perform equally well against the
test set (Fig. 6). Therefore, we further test the ability of M1 and
M2 to predict the LLPS propensity of the NtoS variant of A2
LCD with respect to the WT. Only the M1 model, which has
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λ values for N and S of similar magnitude correctly predicts
approximately the same LLPS propensity for variant and WT
(SI Appendix, Fig. S20), in agreement with experiments (24).

Correlating Single-Chain Properties and Phase Separation. Moti-
vated by recent experiments on the A1 LCD (15, 16), we perform
a detailed analysis of the coupling between chain compaction and
phase behavior of the A1 LCD variants. In agreement with pre-
vious observations (16), the log10(csat) values for the aromatic
variants show a linear relationship with the scaling exponent,
νsim , whereas changes in the number of charged residues (charge
variants) result in significant deviations from the lines of best fit
(Fig. 7 A–C). Following the approach of Bremer et al. (16), we
plot the residuals for the charge variants with respect to the lines
of best fit as a function of the net charge per residue (NCPR)
(Fig. 7 D–F). The results for M1 and M2 show the V-shaped
profile observed for the experimental data (16) and support
the suggestion that mean-field electrostatic repulsion between
the net charge of the proteins is responsible for breaking the
coupling between chain compaction and LLPS propensity (16).
In agreement with experimental data (16), we observe that for
M1 and M2 the driving forces for LLPS are maximal for small
positive values of NCPR (∼ 0.02 ).

The dependence of LLPS on NCPR is clarified by com-
paring the residual nonelectrostatic energy maps of +8D
(NCPR = 0), +4D (NCPR ≈ 0.03), and −4D (NCPR ≈
0.09) with respect to the WT of A1 LCD (NCPR ≈ 0.06)
(SI Appendix, Figs. S21 and S22). While in the case of NCPR =
0 the residual interaction patterns within the isolated chain and
between chains in the condensate largely overlap, the energy
baselines are clearly down- and up-shifted for NCPR ≈ 0.03
and NCPR ≈ 0.09, respectively (SI Appendix, Figs. S21 G–I and
S22 G–I). Although the interaction patterns are still dominated
by the stickers, deviations of the NCPR from ∼ 0.02 result
in electrostatic mean-field repulsive interactions that disfavor
LLPS. The LLPS-promoting effect of small positive NCPR
values finds explanation in the amphiphilic character of the
R side chains (18) which compensates for the repulsion
introduced by the excess positive charge by allowing for favorable

interactions with both Y and negatively charged residues. As
opposed to M1 and M2, the readily phase-separating M3 model
shows a weaker dependence on NCPR, especially for variants
of net negative charge. This suggests that the experimental
observations regarding the coupling between conformational and
phase behavior of A1 LCD stem from a well-defined balance
between mean-field repulsion and sticker-driven LLPS which
can be offset by an overall moderate increase of 3 to 4% in the λ
values of the residues present in A1 LCD.

Comparing Intramolecular and Intermolecular Interactions. After
establishing the ability of model M1 to accurately predict
trends in LLPS propensity for diverse sequences, we analyze
the nonelectrostatic residue–residue energies for FUS LCD
and A2 LCD within a single chain, as well as between pairs
of chains in the dilute regime and in condensates. We find a
striking similarity between intramolecular and intermolecular
interaction patterns for both proteins (Fig. 8), consistent with a
mostly uniform distribution of stickers along the linear sequence
(Fig. 8 G and H) (15, 74). Notably, besides the aromatic F and
Y residues, the analysis also identifies an M residue and four
R residues as stickers in FUS LCD and A2 LCD, respectively.
Therefore, the parameter-learning procedure presented herein
corroborates the important role of R as a sequence-dependent
sticker (16), whereby the large λ value for R in models M1–3
presumably reflects the ability of the amphiphilic guanidinium
moiety to engage in H-bonding, as well as π stacking and
charge–π interactions (18). Further, in the dilute regime, the
intramolecular and intermolecular interactions are weaker in
the N- and C-terminal regions than for the rest of the chain,
as evident from the upturning baselines of the one-dimensional
(1D) interaction energy projections. This result is consistent
with the faster local motions of the terminal residues inferred
from 15N NMR relaxation data for both unfolded proteins
(75) and a number of phase separating IDPs (15, 22, 23).
We also find that the aggregation-prone Y-rich region of A2
LCD (residues 84 to 107) interacts with the entire polypeptide
chain (Fig. 8 D–F) and thus likely drives chain compaction
and self-association as well as LLPS. Finally, in line with

A B C

D E F

Fig. 7. Correlation between chain compaction and LLPS propensity for aromatic and charge variants of A1 LCD. log10(csat/M) vs. νsim for A1 LCD variants
from simulations performed using the (A) M1, (B) M2, and (C) M3 models. Black and colored circles indicate aromatic and charge variants, respectively. Black
lines are linear fits to the aromatic variants. (D–F) Residuals from the linear fits of A–C for the charge variants of A1 LCD as a function of the NCPR. Values
reported in the legends are Pearson’s correlation coefficients. Error bars of log10(csat) values are SEMs of averages over blocks of 0.3 μs. Error bars of νsim

are SDs from fits to Rij = R0|i − j|νsim in the long-distance region, |i − j| > 10. Solid lines are linear fits to the data. Dotted lines in D–F are lines of best fit
to the experimental data by Bremer et al. (16).
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Fig. 8. Comparing residue–residue interactions in dilute solution and in the condensate. Energy maps from simulations of the M1 model of (A–C) FUS LCD
and (D–F) A2 LCD calculated using nonelectrostatic interaction energies. The 1D projections of the energy maps for (G) FUS LCD and (H) A2 LCD, normalized
by the absolute average interaction energy |〈E〉| and shifted vertically for clarity. Colors indicate that the energies were calculated within a single chain at
infinite dilution (blue), between two chains in the dilute regime (orange), and between a chain located at the center of a condensate and the surrounding
chains (green).

previous observations from theory, simulations, and experiments
(16, 76, 77), we observe that the polypeptide chains of A1
LCD, A2 LCD, and FUS LCD are more expanded in the
condensed phase than in the dilute phase (SI Appendix, Fig. S23).
In particular, we find that the scaling exponents of the LCDs
increase toward ν = 0.5 in the condensed phase and that
differences in compaction between WT and charge variants of
A1 LCD are greater in the dilute than in the condensed phase
(SI Appendix, Fig. S23).

Conclusions
In this work we implement and validate an automated proce-
dure to develop an accurate model of the LLPS of IDPs based
on experimental data reporting on single-chain conformational
properties. We show that this strategy succeeds, in agreement
with the previously observed coupling between chain compaction
and propensity for phase separation (15, 20, 58, 59), but also
appears to recapitulate the recent discovery that charge effects
may break this relationship (16). Our work differs from related
previous studies (28, 30, 33, 78) in several ways including the
size of the dataset used for optimization, the use of both NMR
PREs and Rg values, and the introduction of a prior for the
λ values. Moreover, by carrying out model optimizations with
and without the A1 LCD variants, we show that the presence of
phase-separating IDPs in the training set helps the parameter-
learning procedure to capture the role of Y and R residues as
stickers. The accuracy and general applicability of our model
can be tested further by future experiments on systems that
were not used for training or testing. We also note that our
automated, Bayesian optimization approach makes it relatively
straightforward to continue to develop and improve the model
as additional data become available.

Simulations performed using the model optimized herein re-
veal that at least for sequences characterized by a relatively
uniform distribution of stickers, residue–residue interactions de-
termining chain compaction also drive self-association and LLPS.
Moreover, we show that the experimentally observed depen-
dency of LLPS on protein net charge appears to be captured
by salt-screened electrostatic repulsion, even when assuming a
uniform dielectric constant throughout the two-phase system.

We have here shown how our model may be used to help
elucidate the residues that are important for LLPS of IDPs
with UCST behavior. Further, we suggest the model could be
applied to study the influence of disease-associated mutations on
the material properties of protein self-coacervates (79, 80), the
LLPS of protein mixtures as a function of composition, and the
partitioning of proteins that do not readily undergo phase sepa-
ration alone into condensates formed by other proteins (81, 82).
Finally, owing to the generalized parameter-learning approach,
the model could readily be refined as new experimental data
are collected, and it should be possible to extend it to account
for specific pairwise interactions such as cation–π interactions
(25), PTMs (83), the salting-out effect (84), and the temperature
dependence of solvent-mediated interactions (70).

Materials and Methods
We use the Cα-based model proposed by Dignon et al. (21) augmented
with extra charges for the termini and a temperature-dependent treat-
ment for dielectric constant of water (SI Appendix). Langevin dynamics
simulations are conducted using HOOMD-blue v2.9 (85) in the NVT ensem-
ble using the Langevin thermostat with a time step of 5 fs and friction
coefficient of 0.01 ps−1 (SI Appendix). Additionally, 100- and 300-chain
simulations of LAF-1 RGG domain are also performed using openMM v7.5
(86) (SI Appendix, Fig. S20).
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Bayesian Parameter-Learning Procedure. The λ values are optimized using a
Bayesian parameter-learning procedure (30, 87, 88). The training set consists
of the experimental Rg values of 42 IDPs (SI Appendix, Table S1) and the
intramolecular PRE data of six proteins (SI Appendix, Table S2) (16, 22,23,
43–57). To guide the optimization within physically reasonable parameters
and to avoid overfitting the training set, we introduce a regularization term
which penalizes deviations of the λ values from the probability distribution,
P(λ), which is the prior knowledge obtained from the statistical analysis
of 87 hydrophobicity scales. The optimization procedure consists of the
following steps (Fig. 2):

1. Single-chain CG simulation of the proteins of the training set
(SI Appendix, Table S1).

2. Conversion from CG to all-atom trajectories using the powerful
chain restoration algorithm (PULCHRA v3.06) (89) for the proteins in
SI Appendix, Table S2 for which we calculate the PRE data.

3. Calculation of per-frame radii of gyration and PRE data. The PRE rates,
Γ2, and intensity ratios, Ipara/Idia, are calculated using the rotamer library
approach implemented in DEER-PREdict (34) with τt = 100 ps and op-
timizing the correlation time, τc ∈ [1, 10] ns, against the experimental
data.

4. Random selection of six λ values which are nudged by random numbers
picked from a normal distribution of zero mean and SD 0.05. The prior
probability distribution, P(λ), sets the bounds of the parameter space:
any λi for which P(λi) = 0 is further nudged until P(λi) �= 0.

5. Calculation of the Boltzmann weights for the ith frame as wi =

exp{−[U(rrri ,λλλk) − U(rrri ,λλλ0)]/kBT}, where U(rrri ,λλλk) and U(rrri ,λλλ0) are the
total Ashbaugh–Hatch energies of the ith frame for trial and initial λ
values, respectively. If the effective fraction of frames,

φeff = exp

⎡
⎣− Nframes∑

i

wi log (wi × Nframes)

⎤
⎦, [1]

is below 30%, the trial λλλk is discarded.
6. The per-frame radii of gyration and PRE observables are reweighted, and

the extent of agreement with the experimental data is estimated as

χ
2
Rg

=

(
Rexp

g − Rcalc
g

σexp

)2

[2]

and

χ
2
PRE =

1

NlabelsNres

Nlabels∑
j

Nres∑
i

(
Yexp

ij − Ycalc
ij

σexp
ij

)2

, [3]

where σexp
ij is the error on the experimental values, Y is either Ipara/Idia or

Γ2, Nlabels is the number of spin-labeled mutants, and Nres is the number
of measured residues.

7. Following the Metropolis criterion (90), the kth set of λ values is accepted
with probability

Ak−1→k =

⎧⎨
⎩exp

[
L(λλλk−1)−L(λλλk)

ξk

]
, L(λλλk) > L(λλλk−1)

1, L(λλλk) ≤ L(λλλk−1),
[4]

where the control parameter, ξk, scales with the number of iterations as
ξ = ξ0 × 0.99k. L is the cost function

L(λλλ) = 〈χ2
Rg

(λλλ)〉 + η〈χ2
PRE(λλλ)〉 − θ

∑
i

ln [P(λi)], [5]

where 〈χ2
Rg

(λλλ)〉 and 〈χ2
PRE(λλλ)〉 are averages over the proteins in the

training sets. θ and η are hyperparameters of the optimization procedure.
θ determines the trade-off between overfitting and underfitting the
training set, whereas η sets the relative weight of the PRE data with
respect to the radii of gyration.

Steps 4 to 7 are iterated until ξ < 10−15, when the reweighting cycle is
interrupted and a new CG simulation is carried out with the trained λ values.
A complete parameter-learning procedure consists of two reweighting cy-
cles starting from ξ0 = 2 followed by three cycles starting from ξ0 = 0.1. The
threshold on φeff results in average absolute differences between χ2 values
estimated from reweighting and calculated from trajectories performed
with the corresponding parameters of ∼ 1.8 and ∼ 0.8 for ηχ2

PRE and χ2
Rg

,

respectively (SI Appendix, Fig. S24).

Data Availability. Datasets, amino acid sequences, code, and Jupyter
Notebooks for reproducing our simulations and analyses have been de-
posited in publicly accessible repositories on GitHub (https://github.com/
KULL-Centre/papers/tree/main/2021/CG-IDPs-Tesei-et-al) (91) and on Zenodo
(DOI: 10.5281/zenodo.5005953) (92).
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